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ABSTRACT

A finite element approach is used to obtain equations for large

displacement and stability analysis via the principle of virtual work.

The equations are then written in incremental form. It is found that the

inclusion of the nonlinear strain displacement terms results in two addi-

tional 'initial stiffness' matrices. The first is the well known 'initial

stress' matrix. An alternate general method is proposed for the derivation

of the 'initial stress' matrix. The second matrix is a function of previous

displacements and is referred to here as the 'initial displacement' matrix.

It is obtained as a result of writing the nonlinear strain displacement

relations in incremental form. The 'initial displacement' matrix was

found to be of the same order as the 'initial stress' matrix but appears

not to have been previously recognized in finite element analysis.

Results obtained for a simple truss and an arch problem agreed with

results in the literature. Analysis without the 'initial displacement'

matrix resulted in an overestimate of the buckling loads by factors of

1.8 and 2 for the truss and arch respectively. A linear eigenvalue analysis

resulted in an overestimate of the buckling load by factors of 5 and 2

respectively.

It was concluded that 'initial displacement' stiffness matrices

should be included in the finite element analysis of large deformation

and instability problems.
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NOTATION AND DEFINITIONS

{a} = generalized coordinates, coefficients of displacement

polynomials = [Ca]{u}.

[B] = differential operator that transforms generalized

coordinates to increments of strains. Ae. = [B]A{a}.1

[D] = constitutive relation, strain to stress transformation matrix.

{e} = strain vector.

[f(u,x)] = displacement strain relation.

[k(o)] = stiffness matrix due to nonlinear strain-displacement relation.

[k(I)] = stiffness matrix due to initial stress.

{P} = load vector.

[T(u,x)] = local to global coordinate transformation matrix.

u,v = axial and normal displacements, respectively.

{u} = displacement vector, referred to local coordinate system

when not preceded by [T(u,x)].

V = volume.

{x} = position vector.

S= a virtual change.

A = incremental change.

{a) = stress vector.

(u,x) = function of displacement and geometry.

Subscripts

i = subscript denoting matrix row or column.

o,l = subscript denoting initial and final geometry.
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INTRODUCTION

Large displacement analysis by the finite element method was first

proposed by Turner et al.1 'Initial stress' matrices were suggested to

account for the effect of initial stress in truss and plane stress assemblies.

Subsequent work on the derivation of the 'initial stress' matrices for other

elements were reported by Argyris et al,2 Gallagher et al3 and Kapur and

Hartz. 4 In a recent work, Martin5 obtained the 'initial stress' matrix by

considering the potential energy of the element. Nonlinear displacement-strain

relations from the classical theory of elasticity were used.

This paper examines large displacement element behavior by means of the

principle of virtual work. An alternate general method is obtained for finding

the 'initial stress' matrix. All previous authors have neglected the contribu-

tion of initial displacements to the element stiffness matrices. This paper

considers the effect of including the initial displacement terms and shows

that it results in 'initial displacement' matrices which are of the same order

as the 'initial stress' matrices.

Numerical results are then presented to justify the introduction of the

new 'initial displacement' stiffness matrix.

PRINCIPLE OF VIRTUAL WORK

The equations for large deformation analysis are derived by the

principle of virtual work. The general equations are considered without

regard to subscription for elements and nodal points. The subdivision and

expression of the formulation into finite elements and assembly into large

master stiffness and other matrices follow the usual procedure.

In general the strain in the element may be described as a nonlinear

function of the current geometry, previous displacements and the displacement
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at the nodes Wu}.

{e) = f(u,x) (1)

The strain due to a virtual displacement 3{u) is

af

3{e} =[ *f (u,x)][T(u,x)]a{u} (2)

where the transformation matrix [T(u,x)] has been included to indicate

transformation from local to global coordinate systems. The brackets (u,x)

are used to indicate the dependence of the matrix on current nodal displace-

ments and geometry respectively.

By the principle of virtual work

3LuJ[T(ux)] T (u,x)]T{a}dV = a[uJ{P} (3)

V

so that

[T(u,x)]T [ 'f (u,x)]T{o}dV = {P} (4)

V

where {P} is the load vector at the nodes and should be understood to include

*the effect of uniform loading.

This is the equation describing the finite deformation behavior of a

solid. The dependence of the various matrices on geometry and previous dis-

placements are to be particularly noted.

ITERATIVE SOLUTIONS

Equation (4) has been solved by Bogner et al6 by the use of energy search

procedures. Turner et al and subsequent work summarized by Zienkiewicz 7

however have sought to linearize Eq. (4) and account for the large displace-

ment by iterative solutions for the final geometry. A symmetric stiffness
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element based on final geometry was used. It can be seen that, for an

elastic structure, this is equivalent to replacing the stress vector by

(a) [E] E af (ux)) ET(ux)] {u) (5)
au 1 1

where subscript I denotes values at the end of the loading. It is the

author's opinion that a better approximation would result from

f f
{a) 1 CEI ([ 2 (ox)j ET(ox)] + L- (ux)] [T(ux)],){u) (6)

2 au 0 0 au 1

where subscript o denotes initial values.

Thus the linearized iterative solutions may be interpreted as application

of integration methods where strain rates at the beginning and end of the

integration are used. Equation (6) is a higher order formula and still more

refined methods may be introduced which in the limit will tend to the

incremental solution.

INCREMENTAL SOLUTIONS

Equation (4) is a nonlinear equation and must be solved by iteration.

It is often more advantageous to solve a series of linear equations. This

has given rise to the incremental piece-wise linear solutions.

To obtain the appropr iate equations, Eq. (4) is subjected td a small

perturbation and to first order

&[T(ux)] T Lf (ux)]T {a}dV + ET(ux)) TA( 'f (ux)]T{ a)dV
au f au

V V

+ f [T(ux )]T If (ux)]T [D] [ 'f (ux)] [T(ux)],&{uldV = A{P} (7)
au au

V

where ED] is the linearized stress-strain relation for the increment.
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The first term in Eq. (7) gives the so-called 'geometric stiffness'
2 .

matrix, the second term will be shown to be the 'initial stress' matrix5

and the third term is the element stiffness matrix which also contains the
3,5

'initial displacement' matrix. Following previous works, the geometric

stiffness is neglected in the present study.

INITIAL STRESS MATRIX

We now show a method for obtaining the 'initial stress' matrix from the

second term in Eq. (7). In this approach, separate matrices are first formed

for each row of the initial stress vector {a}.
af

Hence the matrix term due to the ith column of [=-] and ith row of
au

{a} is given by

J vi[TT af TSn 1•-u-. dV
JV

now

3j~-f (u,X)}I _____

A___ (ux) T Du u I • {a(u ,x)} AM (8)

a{a(u,x)} 3{u}

By definition of the differential operator [B]

uf T [C]T {B i (9)
1

and also since

3{a)
(a[] (10)

Eq. (8) becomes

T{B)T

and (ux)the in iT I if for AM (11)

and the initial stress matrix for stress i is given by
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T

F aET] T A{. dV = f i[T ]T [a]T a{B}iT [cx][T)tu}dV

V V

= [kl)]A{u} (12)

The full 'initial stress' matrix may then be obtained by summing all the

terms for all the stresses. It is noted that the 'initial stress' matrix is

dependent on the current stress and the current geometry. This procedure

yields the same 'initial stress' matrix as the procedures suggested in

References 3-5. It is described here for its compactness and generality.

For example, it may be used for any element with any degree of nonlinearity

included in the strain displacement equations.

INITIAL DISPLACEMENT MATRIX

We consider the effect of initial displacements on the third term of

Eq. (7). A second order strain displacement relation (usually of rotation)
af

results in a first order current displacement term in the matrix [ý- (u,x)].

If [D] is essentially constant throughout the analysis, pre-multiplication

by [D] results in terms of the order of the total stress. Hence the third

term in Eq. (7) yields additional terms which are of the same order as the

'initial stress' matrix. These terms in the element stiffness are referred

to here as the 'initial displacement' matrix in analogy with the 'initial

stress' matrix. As far as the author is aware, the 'initial displacement'

matrix has been ignored in all previous matrix finite element analysis.

Its effect is, of course, implicitly included in the analysis of

Bogner et al. 6  TEO•TIOAL IIBLARY
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Example 
A"ERDUE1 PROVING GROUND VD.

STEAP-Th

The initial stress matrix and the element stiffness matrix is derived for
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the beam-column. The notation of Reference 5 will be adopted here with the

same assumption of linear and cubic displacements in the axial and normal

displacements u and v.

du 1 dv 2  d 2y
e = -y- (13)dx 2

u = a° + a1x

v b b 1 b2x2 + bbb bx 3  (14)

1u

-T 1

1 v 1

{a} = 1 V2 - [Eel{u} (15)

-3 3 -2 -1

2 -2 1 1

L3  L3  L2  L2

An increment of strain is given by

du dv dv d2v
sat= into membraneyA a-db (16)

separating into membrane and bending components.
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[0 1 0 - 2x- 3X2 dvr- dx dx dx al1

Ale) {a} (17)

0 0 0 0 -2y -6xy

= [B]A {a} I [B] [a] A {u}

Now only considering the membrane strain effect, i.e., only taking the first

column of matrix [B],

0 0 0 0 0 0 0

1 0 0 0 0 0 0

D{B IT 0 0 0 0 0 0 0

- dv - 0 0 0 1 2x 3x 2  (18)
a{a} dx

dv
2x - 0 0 0 2x 4x 2  6x 3

dx

3x2 d 0 0 0 3x 2  6x 3  9x 4

dxL

a{a}

By Eq. (12) the initial stress matrix becomes

0  0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

[k()]m = m[T]T [a]T 0 0 0 1 2x 3x2  [a][T]dV (19)
V 0 0 0 2x 4x 2  6x 3

0 0 0 3x 2  6x 3  9x4

5
This is identical with the expression derived by Martin.

(0)The third term gives rise to the element stiffness matrix [k ] for

elastic behavior and neglecting second order terms, we have the element
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stiffness matrix

0

0

T 0 0 0
[k] [ [T] [i]T E dv [a][T]dV (20)

v 0 d- 0 0
dv

0 2x d 0 0 4y 2

dx

0 3x2dv 0 0 12xy 2  36xy 2
dx

There are linear coefficients in displacements in the stiffness matrix [k(0)].

These linear coefficients form the 'initial displacement' matrix.

INSTABILITY

The instability that is sought exists as stationary points in the solution

of Eq. (4). It is only when the incremental equation (7) is used that we

obtain the eigenvalue problem.

From this standpoint, we discern several levels of approximation in the
.5 .2

literature. Martin and Argyris suggested a straightforward use of the

'initial stress' matrix by scaling as in the classical eigenvalue approach.

Gallagher et al3 recognized the need for the correct evaluation of the stress

terms in the 'initial stress' matrix. This was achieved by iteration. An

improved level of approximation may be achieved by inclusion of the 'initial

displacement' matrix in an incremental large deformation analysis. Unless

the mode of instability is known, the master stiffness equations must be

examined for instability after each increment of load. That is to say

unsymmetric modes may not be obtained from a symmetric pre-buckling

displacement pattern in an incremental solution.



COMPUTER PROGRAM

A general purpose finite element computer program was modified to allow

a power sweep for the lowest eigenvalue and eigenvector after each increment

of load. The geometry was updated after each increment of load. The analysis

was load controlled as opposed to deflection controlled. It was thought that

such an approach would allow a search for asymmetric modes in cases with non-

proportional loading. For this reason, no results were obtained for the

post-buckled region. Stiffness matrices were developed for the truss and

beam-column element. The arch was represented by a series of straight

beam-column elements.

NUMERICAL EXAMPLES

Results were obtained for a simple truss and an arch example. Figure 1

shows the single-bar structure analyzed by Mallett and Berke.8 The results

from the present theory agree with that of Reference 8. The effect of neglect-

ing the 'initial displacement' matrix is also shown. The linear instability

load is included to show the effect of neglecting changes in geometry and

stress.
9

Figure 2 shows an arch tested by Gjelsvik and Bodner. The experimental

and predicted buckling loads agree when the analysis is performed with 16

elements. Again, results obtained without the 'initial displacement' matrix

demonstrate the need for this matrix.

DISCUSSION

The results for the arch show an unexpected variation with the number of

elements. Two factors contribute to this. First of all the nature of the

point load can be expected to cause rapid changes of displacements near its

point of application. The second factor is that the curved arch is being
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approximated by a straight beam column.

Calculations with 32 elements showed yet another effect of using the

beam column approximation. This was that the equations of equilibrium showed

poor convergence. The cause of this may best be explained by noting that the

representation of the correct arch effect by a beam element depends on the

axial component of the relative vertical displacements between the nodes.

For the element adjacent to the mid-point of the arch, both the slope of the

element and the relative vertical displacements are obtained as a result of

small differences of large quantities. Hence, appreciable round-off errors

can be expected in solutions with small elements. This was the reason for

abandoning the analysis with 32 elements.

The choice of a linear axial displacement which resulted in a constant

axial stress was not a good one. The second order strain terms resulted in

a saw-toothed axial stress distribution along the arch. For the present, the

saw-toothed stress distribution was removed by assuming that the stress state

throughout each arch element was given by its centroidal value. Though the

results are no longer 'consistent' within the principle of virtual work, this

stop-gap element allows an investigation of the 'initial displacement' matrix.

Reference 8 only required 4 elements to obtain good results. It is

thought that this is due to the element used there which always satisfied

axial equilibrium. It may be that, with the use of an improved axial displace-

ment function, the same results could be achieved here with fewer elements.

The results in the above examples demonstrate the need for including the

'initial displacement' matrix in a large deformation analysis. The structures

tested, however, are noted for their sensitivity to changes in geometry. It

may well be that, in general, initial displacements do not play such a large

role.
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NOTE ON LARGE DISPLACEMENT ANALYSIS BY ASSUMED MODES

The 'initial displacement' matrix has been obtained here and shown to be

as important as the 'initial stress' matrix. This appears to be a new effect

in the context of finite element analysis. However, it is important to note

that, within the larger framework of the literature on large displacement anal-

ysis in continuum mechanics, the role of initial displacements is not new and

has always been recognized. It is particularly interesting to regard the

finite element method as a special case of the Ritz assumed modes technique

in which the modes are written in terms of nodal point displacements. A

large body of literature already exists on the use of the Ritz assumed modes

technique for the solution of large displacement and instability problems.

For example, in a summary of Koiter's work10 dealing with post-buckling be-

havior, Budiansky has presented equations which can be seen to include

Eqs. (4) and (7) as special cases (from Eqs. (3) and (4) in Reference 11).

11In general, the equations do not lead to such a simple and clear-cut matrix

as the 'initial displacement' matrix found here. The difference between the

present work and References 10 and 11 is that as a first approximation, the

latter works neglect the effect of displacements prior to instability. This

displacement has been shown to be important in the examples considered here.

CONCLUSIONS AND RECOMMENDATIONS

1. A compact and general method has been suggested for finding the 'initial

stress' matrix for finite element analysis.

2. Initial displacements were shown to contribute an 'initial displacement'

matrix to the stiffness matrix of an element in a large deformation

analysis. This matrix was seen to be of the same order as that of the

'initial stress' matrix.
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3. Numerical examples were presented which justify the introduction of

the initial displacement matrix.

4. The effect of including the 'initial displacement' matrix should be

investigated over a wider variety of elements and material behavior.
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